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Multielectrode electroencephalogram power spectra: Theory and application to approximate
correction of volume conduction effects
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Using a physiologically based model of brain activity, electroencephalogram �EEG� power spectra are
calculated for signals derived from general linear combinations of voltages from multiple electrodes, with and
without filtering by volume conduction. Two simple methods of combining scalp measurements to estimate
unfiltered EEG power spectra are then proposed and their accuracy and robustness are explored, using the
model predictions as an illustration. It is found that these methods, including a case that uses just three
electrodes, enable improved estimation of the underlying spectrum relative to each of several widely used
combinations alone.
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I. INTRODUCTION

Electroencephalography is widely used to probe brain
electrical activity using weighted linear combinations of
voltages recorded from combinations �often called deriva-
tions in the electrophysiological literature� of scalp elec-
trodes �1–3�. In using the electroencephalogram �EEG�, one
must contend with attenuation and spatial low-pass filtering
of the signal in the cerebrospinal fluid, skull, and scalp due to
volume conduction. The latter effect results in loss of spatial
resolution �2,3�, and removal of high temporal frequencies,
which are linked to short spatial scales by a dispersion rela-
tion. By combining signals from neighboring electrodes to
produce higher order derivations, spatial high-pass character-
istics can be introduced to compensate approximately for
volume conduction �2–5�.

In recent years, physiologically based continuum model-
ing has had considerable success in reproducing single-
electrode spectra and a wide variety of other EEG measures
�Refs. �6–8� and references cited therein�; however, predic-
tions of spectra for general electrode combinations have not
been made using these methods, despite the wide use of such
derivations experimentally. Nor have there been detailed ex-
plorations of their ability to estimate the unfiltered spectrum
at the brain surface from the one filtered by volume conduc-
tion and observed at the scalp.

This paper has two tasks, motivated by the above consid-
erations. First, we derive the spectra predicted by our physi-
ologically based model for general weighted electrode com-
binations �derivations�. Second, we explore the issue of
estimation of underlying power spectra from filtered ones
using the method mentioned in the first paragraph above, and
illustrate the results using spectra predicted from the model.
The aim here is to provide a simple method to improve on
single-electrode, bielectrode, or Laplacian estimates alone,
which are often used without further processing in the litera-
ture. In Secs. II–IV, equations for power spectra of both fil-
tered and unfiltered electrode combinations are derived. In
Sec. V various combinations of voltages and resulting spec-
tra are used to demonstrate the restoration of filtered EEG

spectra to approximate those at the cortex.
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II. MULTIELECTRODE SPECTRA

EEGs record scalp voltage fluctuations that are approxi-
mately proportional to fluctuations in activity �e in excita-
tory pyramidal neurons in the cerebral cortex �2�. Leaving
aside the constant of proportionality, we can thus write a
weighted potential difference �N as a linear combination of
the individual signals at N electrodes at locations R j relative
to a nominal location r �e.g., the centroid� for the derivation
as a whole,

�N�r,R1,R2, . . . ,RN,t� = �
i=1

N

hi�e�r + Ri,t� , �1�

where hi is the weight of the ith electrode voltage. For ex-
ample, the bielectrode potential difference

�2�r,R,t� = �e�r + R,t� − �e�r,t� , �2�

is the difference in the signals at r+R and r respectively �1�,
and approximates �aside from a factor 1 /R� the directional
derivative of the cortical excitatory field, with

R · ��e�r,t� � �e�r + R,t� − �e�r,t� . �3�

A commonly used higher-order derivation is the five-
electrode combination, �5. Two important special cases are
the equilateral case, where the spacing of the four electrodes
from the central electrode is constant; and the orthogonal
case where the electrodes are located along two perpendicu-
lar axes. The simplest case is then the equilateral orthogonal
combination, which is used here. Just as the bielectrode sig-
nal is related to the directional derivative by �3�, so the equi-
lateral, orthogonal signal is related to the Laplacian by

R2�2�e�r,t� = R2� �2

�x2 +
�2

�y2��e�r,t� , �4�

��e�r + Rx̂,t� + �e�r − Rx̂,t� + �e�r + Rŷ,t�

+ �e�r − Rŷ,t� − 4�e�r,t� , �5�

=�5�r,R,t� , �6�
where carets denote unit vectors.
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III. POWER SPECTRA

We now determine the unfiltered EEG power spectra for
various combinations of electrodes, focusing on the single-
electrode, bielectrode, and and five-electrode derivations �6�.
Transfer functions calculated from our physiologically based
model of cortex and thalamus �7,9� enable spectra to be cal-
culated.

A. Model of underlying activity

In determining scalp power spectra, the underlying neural
function of interest is the excitatory cortical activity in pyra-
midal cells at position r and time t, �e�r , t� �2�. We recently
developed a physiologically based model of EEG generation
that predicts EEG observables from quantities such as corti-
cothalamic connectivities, synaptic strengths, dendritic time
constants, neural conduction speeds, and axonal ranges, us-
ing a continuum approximation to neural tissue �7�. These
predictions have reproduced a variety of EEG phenomena
�7�. The details of the model, including further details of its
underlying assumptions and parameters, are given Ref. �7�,
so we do not repeat them here.

The theoretical expression for the transfer function, which
relates the EEG amplitude �e at wave vector k and angular
frequency � to the input stimuli �n, is �7�

�e�k,��
�n�k,��

=
GesL

1 − GeiL

GsnLei�t0/2

1 − GsrsL
2

1

k2re
2 + q2re

2 , �7�

q2re
2 = �1 − i�/�e�2 −

L

1 − GeiL
�Gee +

�Gese + GesreL�L
1 − GsrsL

2 ei�t0� ,

�8�

L = �1 − i�/��−1�1 − i�/��−1, �9�

where extensive analysis of the available literature �7� shows
that, in the alert waking state, t0�85 ms is the time taken for
signals to travel from cortex to thalamus and back, �
�83 s−1 and ��800 s−1 are dendritic rate constants, �e
�116 s−1 is a characteristic damping parameter of cortical
signals, re�86 mm is the characteristic excitatory axonal
range, and the gains for transmission of signals between vari-
ous populations of neurons, are Gee�6.8 �excitatory to ex-
citatory connections�, Gei�−8.1 �inhibitory interneurons to
excitatory connections�, Gese�4.2 �corticothalamic feedback
via thalamic relay cells�, Gesre�−3.1 �corticothalamic feed-
back via thalamic reticular nucleus and thalamic relay cells�,
Gsrs�−0.37 �intrathalamic feedback� Ges�1.7 �coupling
from thalamic relay nuclei to cortex�, and Gsn�0.8 �cou-
pling from external signals to thalamic relay nuclei�. These
parameter values are used to illustrate our results below; they
will change in other cognitive and arousal states. Also, they
are assumed to be spatially constant, which is only a first-
order approximation to the real situation, which can be
handled by appropriate generalization of the model �10�.

B. Single electrode spectrum

Before commencing, we note that the single-electrode

spectrum is, strictly speaking, the spectrum expected for
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measurements of one electrode relative to a remote, quiet
reference electrode. In reality, this is not attainable, as the
reference electrode cannot be positioned very remotely, and
is not noise free. Using the average potential of all the elec-
trodes can provide a good approximation if they are suffi-
ciently numerous �3�, and we discuss this point further at the
end of Sec. III D.

In modeling the single-electrode power spectrum, we as-
sume input stimuli �n can be approximated by white noise
�7�, which we set to unit spectral amplitude without loss of
generality. The power spectrum, P�k ,�� is

P�k,�� = 	�e�k,��	2, �10�

whence the frequency spectrum is obtained by integrating
over k. Equation �7� implies

	�e�k,��	2 =
A

	k2 + q2	2
, �11�

with

A =
1

re
4
 GesL

1 − GeiL

2
 GsnL

1 − GsrsL
2
2

. �12�

Thus, the single-electrode power spectrum, with no volume
conduction effects, is

P���� = A� d2k

	k2 + q2	2
. �13�

Changing to polar coordinates in k space and decomposing
into partial fractions then yields

P���� =
2�A

i Im q2�
0

	

dkk� 1

k2 + q*2 −
1

k2 + q2� , �14�

where q* is the complex conjugate of q and Im q2 denotes the
imaginary part of q2. This gives

P���� =
�A

2i Im q2 ln� q2

q*2� . �15�

Writing �15� in terms of 
=Arg�q2� gives

P���� =
�A


Im q2 , �16�

which reproduces earlier results �6�.

C. Bielectrode spectrum

We can now treat the bielectrode power spectrum

P�2�r,R,�� = 	�e�r + R,�� − �e�r,��	2. �17�

If the cortex is assumed to be spatially homogeneous, the
bielectrode potential depends only on the separation of the
electrodes R. The power spectrum is then found by averag-
ing over r:

P�2�R,�� = �P�2�r,R,��
r �18�

=2�P���� − Re U� , �19�
with
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U =� d2k
A

	k2 + q2	2
eik·R. �20�

Simplifying as for the single-electrode case, we find

U =
A

2 Im q2�
0

2�

d�eikR cos ��
0

	

dkk� 1

k2 + q*2 −
1

k2 + q2� ,

�21�

=
�A

Im q2�
0

	

dkkJ0�kR�� 1

k2 + q*2 −
1

k2 + q2� , �22�

where J0 is a Bessel function �11�. A standard result �11�
allows the integral to be explicitly expressed in terms of the
Macdonald function K0�x� �a modified Bessel function of the
second kind�:

U = − 2�A
Im�K0�qR��

Im q2 . �23�

Finally, substitution into Eq. �19� produces

P�2�R,�� =
2�A

Im q2 �
 + 2 Im�K0�qR��� , �24�

in accord with previous work �6�.
As the separation R between electrodes becomes large for

fixed q, the K0 term in �24� becomes small and the spectrum
approaches the sum of those for the individual electrodes, as
shown in Fig. 1. Physically this effect is explained in terms
of phase coherence: as the electrodes are moved further
apart, the phase difference at any given frequency becomes
random. Since our assumed stimulus signal is phase incoher-
ent, the power spectrum approaches twice the single-
electrode value.

D. General result, including five-electrode case

FIG. 1. Effect of electrode separation on unfiltered bielectrode
power spectrum. As the separation becomes large the bielectrode
power spectrum approaches the solid curve, which represents twice
the power spectrum for a single electrode. Separations shown are
0.05 m �dashed�, 0.15 m �dotted�, and 0.25 m �dashed-dotted�.
From �1�, the spectrum for a general derivation is

051918
P�N�r,R1, . . . ,RN,�� = 
�
i=1

N

hi�e�r + Ri,��
2

. �25�

Assuming spatial homogeneity, we have

P�N�R1, . . . ,RN,�� = �P�N�r,R1, . . . ,RN,��
r, �26�

=�
i=1

N �hi
2P���� + 2�

j=1

i−1

hihj

�� d2k
A

	k2 + q2	2
eik·�Ri−Rj�� .

�27�

Recognizing the integral in �27� from �20�, we then find

P�N�R1, . . . ,RN,��

=
�A

Im q2��
i=1

N �
hi
2 − 4�

j=1

i−1

hihj Im�K0�q	Ri − R j	���� .

�28�

The first term in the large square brackets in �28� is the sum
of single-electrode contributions, while the second is the sum
of bielectrode contributions. The bielectrode case itself has
h1=1, h2=−1, R1=R /2, and R2=−R /2 in �28�.

Using �5� and �28� yields the five-electrode spectrum

P�5�R,�� =
4�A

Im q2 Im�5
 − 2K0�2qR� − 4K0�qR�2�

+ 16K0�qR�� . �29�

Analogously to the bielectrode case, we see that as R be-
comes large, the K0 terms become small and the spectrum
approaches 20 times that of a single electrode. This factor
results from the electrode weightings: there are four elec-
trodes with weightings of 1 and one with a weighting of −4,
so the sum of the squares is 20.

Equation �28� can also be used to obtain further insight
into how use of the average potential of numerous electrodes
as a reference can enable the single-electrode spectrum to be
approximated, as noted at the beginning of Sec. III B and in
Ref. �3�. If one electrode �the first, without loss of generality�
is referenced relative to the average of all N, the weight
factors are h1=1 and hi=1/N for i
1. Recognizing that only
a fraction of order 1 /N of electrodes can be close enough to
the chosen one to contribute appreciable terms involving the
K0 functions, the contents of the square brackets on the right-
hand side of �28� then approach 
 in the limit of large N,
which leads to �28� reproducing �16� in this limit. Hence, the
idealized single-electrode spectrum can be approximated by
using the average reference in a sufficiently dense electrode
array.

IV. EFFECTS OF VOLUME CONDUCTION

To include the effects of volume conduction through the
cerebrospinal fluid, skull, and scalp in spatially filtering the

electrode signals we modify �10� to
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P�k,�� = F�k�	�e�k,��	2, �30�

where the low-pass spatial filter function corresponding to
volume conduction can be approximated at small to moder-
ate k by F�k���1+k2 /k0

2�−1 �9�. The parameter k0 can be
estimated from the electrical conductivities and thicknesses
of the various tissues overlaying the cortex and from fits of
coherence and correlation functions to data, giving k0
�29 m−1 which is the value assumed in numerical examples
below �9�. This idealization ignores variations in underlying
geometry and tissue properties with position on the scalp.

Using methods similar to those in the preceding section,
for a general linear combination of electrodes we obtain

P�N��� =
�A

Im q2��
i=1

N �hi
2 Im� ln�q2/k0

2�
1 − q2/k0

2�
+ 4�

j=1

i−1

hihj Im�K0�k0	Ri − R j	�
1 − q2/k0

2

−
K0�q	Ri − R j	�

1 − q2/k0
2 ��� , �31�

where the terms preceded by hi
2 and hihj are single-electrode

and bielectrode contributions, respectively.
For a single electrode the spectrum is given by

P���� =
�A

Im q2 Im� ln�q2/k0
2�

1 − q2/k0
2� . �32�

For a bielectrode one has

P�2��� =
2�A

Im q2 Im� ln�q2/k0
2�

1 − q2/k0
2 −

2�K0�k0R� − K0�qR��
1 − q2/k0

2 � .

�33�

The five-electrode spectrum is then given by

P�5��� =
4�A

Im q2 Im� 1

�1 − q2/k0
2�

�5 ln�q2/k0
2� + 2�K0�2k0R�

− K0�2qR�� + 4�K0�k0R�2� − K0�qR�2��

− 16�K0�k0R� − K0�qR���� . �34�

Once again, as the separation of the electrodes becomes
large, the K0 terms become small and the power spectra
above approach multiples of that of the single filtered elec-
trode. Similarly, as k0→	 the results in this section approach
their unfiltered counterparts in Sec. III.

V. CORRECTION FOR VOLUME CONDUCTION
EFFECTS ON POWER SPECTRA

Ideally, one would like to estimate the EEG spectrum at a
single point on the surface of the brain, rather than the spec-
trum of a weighted voltage derivation at the scalp. Many
authors have developed complex inverse-modeling methods
to estimate brain electrical fields from scalp fields, culminat-
ing in dura imaging approaches �3� and commercial pack-
051918
ages such as LORETA �12�. Others have examined methods
for enhancing fine-scale spatial features based on higher-
order derivations, and focusing especially on use of the La-
placian �2�. Our approach, which focuses on flattening the
volume conduction transfer function, F�k� in �30�, comple-
ments these by virtue of its simplicity, which makes it easy to
implement to obtain useful approximate results.

In order to estimate spectra at the brain surface, we first
examine typical scalp spectra for the electrode combinations
discussed above and k0=29 m−1. Figure 2 shows the ratio of
the predicted spectrum for a single electrode on the scalp to
that for a single electrode on the brain, demonstrating large
differences between the two. The relative decay of the scalp
spectrum at high frequencies is obvious, with the connection
between high spatial and temporal frequencies arising from
the wave dispersion relation �2�. At zero frequency, the ratio
of the spectra is not exactly unity because wave damping
means that the dispersion relation does not correspond to a
delta function relationship between � and k; hence, nonzero
k contribute even at �=0 and some volume conduction fil-
tering still occurs. In contrast, the five-electrode spectrum
shown in Fig. 2 has enhanced power at higher frequencies,
despite the effects of filtering, but becomes too small at low
frequencies. The ripples in the two curves are another mani-
festation of the different filtering properties of the two deri-
vations: peaks in the single-electrode spectrum correspond to
peaks in the ratio, because weakly damped waves propagate
further and thus have higher power and lower k. This also
explains the correlation between peaks in the spectrum in
Fig. 1 and dips in the five-electrode ratio in Fig. 2: the five-
electrode derivation is most sensitive to high k.

The above results suggest that a linear combination of
spectra or voltages from a single electrode and a higher-order
derivation could yield a power spectrum with little net en-
hancement or attenuation of any particular frequency, and
thus give an improved approximation to the spectrum at the
surface of the brain. The electrode weightings can be deter-
mined in a number of ways. In each of the following cases,
the weighting was determined by adjusting the electrode
separation to minimize the largest percentage error found in

FIG. 2. Ratios of the scalp power spectra for a single electrode
�solid� and a five-electrode combination �dashed� to that of a single
unfiltered electrode. The ratio for the single scalp electrode decays
with frequency, the five-electrode combination increases with
frequency.
the composite scalp power spectrum when compared to the
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spectrum for a single electrode on the surface of the brain.
Ideally a robust method to tune the weightings for each in-
dividual EEG subject would be needed, but use of even a
typical value of k0 will yield better results than either single-
electrode, bielectrode, or five-electrode �Laplacian� deriva-
tions alone. In this section we illustrate this approach and its
sensitivities to electrode spacing and weighting �whose opti-
mal values can only be approximately estimated in experi-
mental situations� using the model spectra and the param-
eters listed in Sec. III A, which give a good approximation to
normal adult waking EEG spectra �7�.

A. Linear voltage combination

One method of implementing the ideas above involves
changing the weighting of the central electrode in the five-
electrode derivation, thereby effectively combining single-
electrode and Laplacian components. This gives

PLV�R,�� = �	�e�r + Rx̂,�� + �e�r − Rx̂,�� + �e�r + Rŷ,��

+ �e�r − Rŷ,�� − a�e�r,��	2
r, �35�

for an equilateral orthogonal electrode arrangement, where
the constant a is to be determined. In the following figures,
we illustrate the use of �35� using model spectra from Sec. III
with the parameters in Sec. III A.

Figures 3 and 4 show typical scaled relative power spectra
from Eq. �35�, spectra are given for optimal values of a �Fig.
3� and R �Fig. 4� and with ±5% and ±20% deviations from
optimal values, respectively. In Fig. 3, the separation of elec-
trodes has been held constant to show sensitivity to a. For
1.05 times the optimal value of a, extra weight is placed on
the central electrode, skewing the result towards a spectrum
more like that for a single electrode, as in Fig. 2. In the 0.95a
case, the reverse applies and the spectrum is more like a
five-electrode spectrum. In Fig. 4, each power spectrum has
an optimally tuned a value, demonstrating sensitivity to elec-
trode separation R. In the optimal case there is a small varia-
tion in the ratio of spectra with frequency, within 1.1% up to
100 Hz, with ripples associated with spectral peaks, as dis-
cussed in connection with Fig. 2 �and which reverses in go-
ing from the upper curve to the lower one for the reasons

FIG. 3. Ratios of power spectra from �35� to the unfiltered
single-electrode spectrum for R=0.035 m, and values of a that are
optimal �solid, a=1.61�, 5% lower �dashed�, and 5% higher
�dotted�.
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discussed above�. A larger value of R reduces the high pass
filtering effect, thus requiring a greater weighting on the cen-
tral electrode. This produces a spectrum more like the five-
electrode spectrum at lower frequencies and more like the
spectrum for a single electrode at high frequencies. The op-
posite effect occurs when R is made smaller. The results are
summarized in Table I.

A more general approach would be to construct a power
spectrum using a signal combination of the form

P̃LV = �
i,j

aij�i� j
*, �36�

where the aij are weight factors. In principle, these extra free
parameters would improve the accuracy of the estimated
spectrum. We do not explore this further here as other indi-
vidual subject effects such as skull nonuniformity are likely
to be more important and there would be too many free pa-
rameters to determine accurately from the data in any case.

B. Linear power spectrum combination

Another method of approximately correcting the power
spectrum for volume-conduction effects is to construct a lin-
ear combination of the power spectra of a single-electrode
and a higher-order derivation, expressed as

PLP = aP� + �1 − a�P�N, �37�

where 0�a�1 is a constant adjusted to maximize the accu-
racy of the combination. Here we choose P�N to be a three-or
five-electrode configuration.

If the �1+k2 /k0
2�−1 filter were exact, it would allow perfect

compensation for the filter by using three electrodes arranged
to form a right angled isosceles triangle. The signal for this
trielectrode derivation is

�3�r,R,t� = �e�r + x̂R/2 − ŷR/2,t� + �e�r − x̂R/2 + ŷR/2,t�

− 2�e�r − x̂R/2 − ŷR/2,t� . �38�

FIG. 4. Ratios of power spectra from Eq. �35� to the unfiltered
single-electrode spectrum for optimal electrode separation, R
=0.035 m �solid, a=1.61�, 20% lower �dashed, a=1.45�, and 20%
higher �dotted, a=1.73�. Each curve has its relevant optimized
weight factor a.
The Fourier transform of �38� is
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�3�k,�� = �eiR�ky−kx�/2 + eiR�kx−ky�/2 − 2e−iR�kx+ky�/2��e�k,�� ,

�39�

giving the power spectrum

P�3�k,�� = �6 + 2 cos�R�ky − kx�� − 4�cos�Rkx�

+ cos�Rky���	�e�k,��	2. �40�

Using the first two terms in the Taylor expansion of the co-
sine function, we can approximate �40� to give

P�3��� =� d2k
�Rk�2	�e�k,��	2

1 + k2/k0
2 , �41�

with the inclusion of the filter function. Combining this re-
sult with the single-electrode spectrum, as in �37�, gives

PLP��� =� d2k�a + �1 − a�R2k2

1 + k2/k0
2 �	�e�k,��	2. �42�

If we then choose

a =
k0

2R2

k0
2R2 + 1

, �43�

we have

PLP��� = a� d2k	�e�k,��	2, �44�

which reproduces the unfiltered power spectrum exactly,
apart from the constant a. In principle, the value of k0 could
be obtained by requiring that PLP differ only in normaliza-
tion for two different values of R, but in practice, confound-
ing factors such as nonuniformities and inaccuracies in the
approximations made above are likely to prevent this from
being feasible.

Due to the approximation made in obtaining Eq. �41� and

TABLE I. Results of power spectrum estimation
binations of power spectra. Columns three and fou
varying R from 0.01 m to 0.11 m in steps of 0.005
centage errors encountered in the optimal cases �i.e
and R�. Note that the last three lines have an optim
tried; accuracy actually continues to improve slow
slowly with increasing R.

Combination Freq. Range

	�+x+�−x+�+y +�−y −a�0	2 0.1–10

0.1–30

30–100

aP�+ �1−a�P�5 0.1–10

0.1–30

30–100

aP�+ �1−a�P�3 0.1–10

0.1–30

30–100
�44� is only valid for values of R below a limit that depends
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on the frequency range of interest and values of the param-
eters in the model. With R=0.03 m �not shown� an error of
about 5% occurs over the frequency range 0–100 Hz. By
including higher order terms and/or higher order derivations
the approximation in Eq. �41� might be improved to allow
larger electrode separations; however, the additional com-
plexity is not warranted, given the level of individual varia-
tion and the confounding factors mentioned in the preceding
paragraph.

In the following figures, we illustrate the above method,
and its sensitivities to R and a using the model spectra and
parameters from Sec. III A. Figure 5 shows four ratios of
spectra for a trielectrode combination, where a� is the opti-
mal value, a is given by �43�, or where there are ±5% devia-
tions from this value. Even with a deviation from a or a�, the
resulting spectrum is a good approximation to the unfiltered
single-electrode spectrum. In the case with a given exactly
by �43�, the relative power spectrum falls slowly, since in-
creasing the frequency decreases the accuracy of the approxi-

g the linear electrode combination and linear com-
ow optimal electrode separations R �optimized by
or the frequency range listed�, and the largest per-
en these percentages are minimized by adjusting a
lue R=0.01 m because this was the smallest value

s R→0 in this case. Conversely, it only degrades

� Optimal R �m� Accuracy �%�

0.035 1.09

0.045 0.18

0.035 0.63

0.055 5.88

0.110 0.90

0.045 1.71

0.010 0.57

0.010 0.18

0.010 0.57

FIG. 5. Ratios of power spectra for an optimized combination of
the form aP�+ �1−a�P�3 to the unfiltered single-electrode spec-
trum. Electrode separation is 0.01 m. The weighting has an optimal
value a�=0.091 �solid curve�, a value a=0.090 given by Eq. �43�
usin
r sh
m f

., wh
al va
ly a

�Hz

0

0

0

�dotted-dashed�, and values of 0.95a �dashed� and 1.05a �dotted�.
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mation in Eq. �41�. The ratio of the spectra is close to, but
less than, unity at very low frequencies as there are nonzero
k, and as a result there is error in the approximation of Eq.
�41�. No dependence of separation is shown for the trielec-
trode as smaller separations will always produce more accu-
rate results.

Figures 6 and 7 show typical scaled relative power spectra
from Eq. �37� with N=5. Spectra are given for optimal val-
ues of a �Fig. 6� and R �Fig. 7� and also with ±5% and ±20%
deviations from these values, respectively. In Fig. 6, the
separation of electrodes has been held constant to show sen-
sitivity to a. In Fig. 7, each spectrum has an optimal a value,
with the spectra showing sensitivity to electrode separation
R. The general features are explained as in Sec. V A for the
five-electrode linear voltage combination.

Table I summarizes indicative results of power spectrum
restoration by the three methods. The trielectrode combina-
tion of power spectra provides the best results, as expected
from discussion in Sec. V B. This is especially useful as the
weight and scaling factor can be predicted with reasonable
accuracy from Eq. �43�, allowing a simpler practical imple-
mentation. The optimal electrode separations are no smaller
than those of the high density arrays �64 or more electrodes�
that are increasingly used for EEG studies. The exception is

FIG. 6. Ratios of power spectra for a combination aP�+ �1
−a�P�5 with R=0.055 m to the unfiltered single-electrode spec-
trum. The weighting a is assumed to be optimal �solid, a=0.86�, 5%
lower �dashed�, or 5% higher �dotted�.

FIG. 7. Ratios of power spectra to the unfiltered single-electrode
spectrum for a combination aP�+ �1−a�P�5 with optimal electrode
separation, R=0.055 m �solid, a=0.865�, a value 20% lower
�dashed, a=0.810�, and 20% higher �dotted, a=0.860�. Each curve

has an optimized weight factor a.

051918
in the last three lines of the table where the optimum actually
occurs at zero separation, but where the accuracy is expected
to degrade relatively slowly with R, based on the analysis in
Sec. V B.

In all cases the spectrum was most accurately approxi-
mated over the range 0–30 Hz, due to the fact that volume
conduction filters higher frequencies more heavily, thereby
requiring more substantial correction. It is also noted that a
larger electrode separation gave a better approximation in
this frequency range, but the reverse is true in the
30–100 Hz range. To explain this we consider Eq. �31�,
where the K0 terms become small as 	Ri−R j	 increases, re-
sulting in a spectrum that approaches a multiple of the spec-
trum for an individual electrode. In the low frequency range
this is appropriate because the power spectrum is only
slightly affected by volume conduction, so we require only
slight high-pass filtering to compensate. However, at high
frequencies, the high-frequency part of the spectrum is
heavily attenuated by volume conduction, so the high-pass
filter needs to be increased by reducing the separation of the
electrodes.

VI. SUMMARY

In the first part of this paper we derived physiologically
based expressions for both filtered and unfiltered EEG power
spectra for a general linear combination of electrode volt-
ages. Explicit expressions for single-, bi-, and five-electrode
cases were written down, and limiting cases were explored.
As expected, multielectrode spectra generally filter out long-
wavelength contributions, emphasizing shorter wavelengths
and, hence, higher frequencies. At large electrode separa-
tions, multielectrode spectra approach constant multiples of
the single-electrode spectrum. We also elucidated how the
single-electrode spectrum can be approximated by using the
average potential of a sufficiently dense electrode array as
the reference.

In the second part of the paper two methods were pro-
posed to estimate unfiltered spectra from scalp spectra, one
involving linear combinations of power spectra, and the
other using linear combinations of electrode voltages. Both
methods use admixtures of high pass filtering to correct for
the low-pass filtering that results from volume conduction, in
essence flattening the k dependence of the transfer function
from brain to scalp.

The results of the above spectral estimation methods were
illustrated, and their sensitivity to electrode separation R and
weighting a were explored, using spectra predicted from our
physiologically based model. Specifically, the method of
combining power spectra was implemented using two differ-
ent electrode combinations, one using five-electrodes and the
other using a trielectrode combination. The trielectrode al-
lows a simple analytic calculation of the electrode weights
and was found to be very accurate for small electrode sepa-
rations, although a practical limit is imposed by the accuracy
with which voltage differences can be measured at small
scales. Sensitivities to the electrode separation and weights
were found to be small enough that the power spectrum

could be estimated with reasonable accuracy and robustness,
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even if R and a are not precisely known. The results should
also be fairly independent of brain state, since they correct
for volume conduction effects, which do not change with
state. Accuracies will, however, change slightly in different
states because of their different frequency and wave-number
content.

The methods suggested should thus provide a significant
improvement on use of single-electrode or Laplacian meth-
ods alone in estimating underlying spectra at the brain. This
is likely to be of most use in obtaining improved first-order
estimates of spectra, which are very often all that is desired
051918
in experimental situations. Where more sophisticated analy-
ses are desired, to cope with spatial nonuniformities in pa-
rameters, for example, similar ideas may be able to be incor-
porated into methods such as those discussed by Nunez and
Srinivasan �3�.
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